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1. In this lecture I am going to discuss things that are known, but
probably not too well known. Correspondingly, the character of the preseuta··
tion be more expository than exploratory, though there may be some elements
of novelty here. I shall discuss certain metric properties of sets and functions,
properties that are important for applications of the Lebesgue integral to
classical analysis.

Two such properties are fundamental, and I shall begin with the one which
is familiar to all: it is the fact that the derivative of the indefinite integral of an
integrable function exists almost everywhere, and almost everywhere is equal
to the integrand, More specifically, the result is as follows; if f(x) =

f(Xr,X2'" .,xn) is an integrable function defined over the n-dimensional
Euclidean space Em and if

F(E) = IEf

is the indefinite integral off, then at almost all points x we have

F(Q)lQf -»- f(x), (1.1)

where Q designates a cube containing the point x and shrinking to x, and IQI
is the measure of Q. The result holds if Q is an n-dimensional interval(paralleI­
epiped) containing x, provided the ratio of the largest and the smallest edge of
Q remains bounded (we consider only intervals with edges parallel to the
co-ordinate axes).

Also, and this easily follows from the preceding, we have at almost all points
x the somewhat stronger result, namely

I If(Y) - f(x)/ dy
Q IQI -»- o. (1.2)

The points at which (1.2)-or a suitable generalization of it-holds, are
usually called Lebesgue points of the functionJ.

* A lecture delivered at the Second Symposium on Inequalities at USAF Academy,
Colorado, August 1967.
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(1.3)

One need not stress the importance of the fact; we all know that without it
the present-day analysis would be impossible. What is, however, less known is
that, in a number of problems, the result does not suffice and must be supple­
mented by another result whose general importance seems to have been
recognized for the first time by Marcinkiewicz.

Some of us who worked in Fourier series in the period between the two
world wars remember a number of problems which remained unsolved for a
long time and which were rather tantalizing; tantalizing, because, without
appearing to be out of reach (unlike, e.g., the problem of convergence almost
everywhere of Fourier series of continuous functions), they were still quite
elusive. I shall mention three examples as illustrations.

(a) In the early nineteen twenties Carleman proved that ifj(x) is a periodic
function of the classL2 and Sk(X) is the kth partial sum of the Fourier series off,
then for almost all values of x we have the relation

1 n

nl 2: !Sk(X) - j(x)iZ ~ 0
+ k~O

("strong summability" of Fourier series). The question naturally arose
whether this result, or a suitable modification of it, holds for functions that
are merely integrable. During a number of years much effort was being spent
on it and a number of generalizations were obtained. For example, it was
shown that the result holds for jin any class £P, provided p is strictly greater
than 1, and that in this case we can even replace the exponent 2 in (1.3) by any
positive q, arbitrarily large. (See, e.g., [10, II, p. 180] and references there.) The
relation (1.3) and its generalizations were usually shown to hold at the Lebesgue
points off, so that when Hardy and Littlewood [3] showed that, for jmerely
integrable, (1.3) need not hold at such points the possibility arose (cf. [3]) that
perhaps, after all, strong summability need not hold almost everywhere for
functions that are merely integrable. The question remained unsolved until
1939 when Marcinkiewicz showed that (1.3) is indeed true almost everywhere
forjintegrable (see [4] or [10, II, p. 184]).

(b) A verywell-knownresult asserts that the Fourier series ofany integrable
functionj(x) is summable (C,o), 0> 0, almost everywhere; more precisely,
at each Lebesgue point off It is also very well known that the result fails for
o= 0: there are integrable functions whose Fourier series diverge at each point.
Thus the result of Hardy and Littlewood that the termwise differentiated
Fourier series ofa functionjis summable (C, 1 + 0), 0 > 0, at each point where
f' exists and is finite, appeared final, the more so as they showed by examples
that the conclusion fails for 0 = 0. But Marcinkiewicz showed that though the
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conclusion may fail at individual points it is nevertheless valid almost every··
where; more precisely, ifj'(x) exists at each point of a set E, then the termwise
differentiated Fourier series offis summable (e,l) almost everywhere in E
(see [5] or [l0, II, p. 81]).

(c) One of the classical results of the theory of Fourier series asserts that
if a periodic and continuous functionf(x) satisfies the condition

f(x + h) - f(x) = 0 {log ~j[hl} (h ---7- 0) (1

uniformly in x, then the Fourier series off converges uniformly (the Dini­
Lipschitz test). It is easy to show by examples that a continuous function!may
satisfy the condition (1.4) at some point x without its Fourier series converging
at that point. The question remained: if a periodic and merely integrable f
satisfies (1.4) at each point x of a set E, does the Fourier series offnecessarily
converge almost everywhere in E? It was again Marcinkiewicz (see [6] or
[10, II, p. 170]) who showed that it is actually so. He even proved a stronger
result: the conclusion holds if at each point x E E we have instead of (1.4) the
obviously weaker relation:

(1.5)(h ---7- 0).~ f: If(x+t)- f(x) Idt=O {lOg ~jlh[}
(Observe that we have "0" here). Incidentally, he also showed that the result
is best possible: the conclusion fails if the expression 1j(log 1jh) on the right of
(1.5) is replaced by any function of h tending to 0 more slowly [5].

In all three cases the solution was made possible byan application ofthe same
theorem which expresses a certain metric property of sets and functions and
which succeeds where the theorem about the differentiability of integrals seems
to be insufficient. And it is a curious fact that this property, in a somewhat
modified form, plays an important role in Carleson's proof of his fundamental
theorem on the convergence almost everywhere of Fourier series of functions
of the class L 2 (see [2], Lemma 5). I shall now describe that property.

2. Given any closed set P situated in the Euclidean space En we shall
call the distance of any point x from P the distance function; it will be denoted
by S(x;P), or simply by Sex). Thus Sex) = 0 if and only if xis inP. Ifn = 1 and
(a,b) is any interval contiguous to P and situated between the terminal points
of P, then the graph of Sex) over (a, b) is an isosceles triangle with base (a,b)
and altitude t(b - a); outside the terminal points of P the graph of Sex) is a
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linear function. If n > 1, the graph of 8(x) is in general much less simple, but
since if we move from a point x to another point y the distance from P does not
increase by more than Ix - yl, it is clear that

I8(x) - 8(y)1 <; Ix - yl,

that is 8(x) satisfies a Lipschitz condition of order 1.
Marcinkiewicz's lemma (or theorem) may be stated as follows (see [10, I,

pp. 129-131 and p. 377].)

(A) Let P be a closed subset of En and 8(x) = 8(x;P) the corresponding
distance function. Let Abe a positive number and f(x) a non-negative function
integrable over the complement Q of P. Then for almost all points x E P the
integral

J (x) =J(x'j,P) = I 8\y)f(y) dy" ", , I In+"En x-y
(2.1)

is finite.
In particular, if P is bounded and K is any finite sphere containingP, the

integral

I 8"(y) d

I In+" yK x-y

is finite almost everywhere in P.

(2.2)

(2.3)

The usual proof of (A) actually gives a little more (see [l0, I], pp. 129-131),
namely the function Jix) is integrable over P. A few years ago Professor
R. O'Neil pointed out to the author that iff E U(En - P), 1 <;p < <Xl, then
J" E U(P) and we have the obvious inequalities for the norms. His proof was
based on Hardy-Littlewood maximal theorems. In what follows we give a
slightly different proof of (A) and its generalization by using a modification of
the integral J".

Whatever the behavior of the integral Jix) in P, it generally diverges outside
P; this is certainly true of the integral (2.2) which is infinite at the points x
interior to K - P. Let us however consider the following modification ofJ,,:

H - I 8\y)f(y)
ix) - En Ix _ Yln+" + 8n+"(x) dy.

It has two obvious properties: (a) it coincides with Jix) for x EP; (b) it is
finite at each point x not in P, provided f E U(En - P), 1 <; p <; <Xl. To prove
the latter we consider separately the y's close to x, in which case the denomi­
nator stays away from 0, and the more distant y's to which we can apply
Holder's inequality.
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We shall also consider another modification of J).., namely

, J o)..(y)f(y)
H).. (x) = En Ix _ yin+).. + on+\y)dy, (2.4)

which, like H).., is finite at each point not in P. In view of the inequality 8(y) <
Ix - yl + o(x) we have, by Jensen's inequality,

8n+)..(y) < 2n+)..-I{!X _ yin+).. + 8n+)..(x)}

and a similar inequality with x and y interchanged. We immediately deduce
from this that

A-I H)..'(x) < Hix) < AH)..'(x)(A = 2,,+A-1 + 1), (2.5)

so that inequalities for H)..' immediately lead to inequalities for H).l but H)..' is
sometimes easier to deal with than H)...

Also, since the values of H).. and H)..' are independent of the values offon P,
we shall assume for the sake of simplicity of enunciation thatfis defined over
the whole of En and, say, is 0 in P.

Iffis bounded, say 0 <f< 1, and has support in a sphere K-:::J P, then

(2.6)

IK exp{yHix)}dx < AIKI

provided y is small enough, y < A~,iI'

(2.7)

3. We first prove (2.6), with H)..' instead of H)...
Let g(x) be any non-negative locally integrable function and let g(x) denote

the corresponding Hardy-Littlewood maximal function

g(x) = Sup {p-n I g(x + z) dz).
p Izl~p

It is a familiar fact that ifg E Lr(En), 1 < r < 00, then g is likewise in Lr(E"), and

(3.1)

1 The fact that g E L'(E") implies g E L'(En), 1 < r < 00, and the inequality ilgil,,;;;
{2rj(r - l)}"llg[!r is, using repeated integration, a simple corollary of the Hardy-Littlewood
classical result for n = 1. The estimate (3.1), where we have rj(r - 1) in the first power, is
slightly deeper and is due to Wiener [9]. See also [1], where it is deduced from the case n =- 1
by the "method of rotation."
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Also the following observation is very well known (and immediate): if'\ and i)

are positive numbers, g(x) is non-negative and in L"(En), 1 < r < 00, then

f oAg(X +z) -
En IzinH + i)n+A dz < Ag(x) (A = An, A)' (3,2)

For, decomposing the integral into two, extended, respectively, over Izi < i)

and Izi » i), we see that the first is majorized by

i)-n I g(x + z)dz ~ g(x),
Izlo( a

and the second by

f g(x+z) -

I I
n+A dz < An, Ag(X),

[z[;;' a z

as a simple integration by parts shows. This proves (3.2).
Let now g(x) be any non-negative function such that Ilgll p' = 1, where

pi = pj(p _ 1). Then

IEn HA/(X)g(x)dx= t/(y) i)A(y) dy {fEn IX- ~~~~i)n+(~J

< An, AIE/(y)g(y)dy

- pi
< An, AllfllpIlgllp' < An, Allfllp' An -'-lllgllp'p-
=p.An,Allfllp ,

and since the least upper bound of the left-hand side here for all such g is the
left-hand side of (2.6) with HA' for HA, this proves the first part of (B).

Passing to (2.7) we observe that the left-hand side there is

IKI +~ ;~ fKHAP dx < IKI +~ ;~APpP I KP dx

Since the last series converges for yAe < 1, (2.7) follows.

4. Let us consider (2.7) in the special casef=. 1 in K, and let w(1J) =

w(1J ;K) be the distribution function of H Ain K, that is, the measure of the set
of the points x E K such that HA(x) > 'YJ > O. An immediate corollary of
(2.7) is
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(C) If'Y is sufficiently small, 0 < 'Y';;; A~"h then the distribution function of
Hix; l,P) in K satisfies an inequality

(4.1)

(5.1)

It is clear that, conversely, (4.1) gives (2.7) with any smaller value of y.

5. Let K be any finite closed sphere in En, and let K 1, K2, ••• be a
sequence, finite or not, of non-overlapping spheres contained in K. The center
of Kj we denote by gj' the radius by rj. Let K;* be the sphere concentric with
Kj of radius -trj • Let K j

O be the interior of K j and P = K - U K/. Let o(x) be
the distance ofxfromP. Ifx E Kj *, then -trj .;;; o(x).;;; r j • Consider the function
H},'(x) for f equal to the characteristic function of the set U K/. Thus

, '" J o\y)
H}, (x) = 4 Kj* Ix _ ylnH + onH(y) dy

J

and an elementary argument (we consider separately the cases when x is or is
not in K/) shows that H},'(x) is contained between two positive multiples,
depending on nand ,\ only, of the sum

'" r~+},
SA(X) = ~ -\-_ I:. 'I~+A' '!+A'

j X SJ T r J

Hence, using (C), or rather its analog for H'A' we obtain the following result:

(D) With the notation just introduced, the distribution function on K of the
sum Six) satisfies the inequality (4.1)

For n = ,\ = 1 this is Lemma 5 of Carleson's paper [2J. In his proof, which is
very short, he uses properties of harmonic functions. We now see that his
lemma has close connection with the results of Marcinkiewicz, and indicating
this was one of the purposes of this lecture. Obviously the result holds if the
spheres K, Kj are replaced by cubes.

6. In all the foregoing the parameter'\ was a strictly positive number.
If ,\ = 0 the arguments break down, and one can also show by examples that
the theorems are false. However, already Marcinkiewicz considered in this
case the substitute function

J. (x'f P) = f log {ljo(y)}-1 fey) d
° " K Ix - yin Y

(6.1)

which has a number of properties in common with lA' A> O. Since the function
/x!-n is not integrable at infinity it is convenient to integrate in (6.1) over a

17
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finite sphere K, which is supposed to contain our closed set P. Morevoer, it
will be convenient to assume that the diameter of the sphere is <- ,!, so that the
integrand in (6.1) is non-negative. Correspondingly, we shall also consider
the function

H (x'fP) = J f(y) log {lj8(y)}-1 dy
o " K Ix - yin + 8n(x)

(6.2)

which for x E P reduces to Jo, and the function Ho'(x) which is obtained from
Ho(x) by replacing the term 8n(x) in the denominator by 8n(y). The inequality
(2.5) holds also in this case. We shall only consider the behaviour of H o and
H o' on K and we have then the following theorem, in which the diameter of K
. 1
IS <2'

(E) IffEU(K), 1 <p < 00, then Ho EU(K) and

{t HoP(x) dxr
p

<- Ap{tP dxr
p

(A = An) (6.3)

and iff==- 1 in K, then

fK exp yHo(x) dx <- AIKj (A = AmY <- An') (6.4)

The proof is parallel to that of B. In the case of (6.3) it is enough to observe
that if g(x) is non-negative in K and the integral of gPO over K is 1, then the
integral of Ho'(x)g(x) over K can be written

tf(Y) {(log 1j8(y))-1 JK Ix -~r):~n(y)} dy,

and that the expression in curly brackets is majorized by the sum

{log 1j8(y)}-1 J g~t;) dz + {log 1j8(y)}-1 J g(l; z) dz,
Izl<;;o(Y) Y o(y)<;;!z!<;;1 z

of which the first term does not exceed g(y) (log 2)-1 , and the second does not
exceed Ang(y). The proof of (6.4) is identical with that of (2.7). We also have
analogous results for the function

S (x) = ~ r/{log(ljrj)}-I
o 4 jx-gjln+r/

J

[cf. (5.1)].
We add that, in the case p = 1, the integrability of H o over K implies the

finiteness of Jo almost everywhere in P. The latter result is, essentially, one
of the original results of Marcinkiewicz. 2

2 Marcinkiewicz [71 himself considered only the case n = 1 and instead of <5(x) the function
<5*(x) equal to 0 inP and to bi - ai in each interval (a"bi)contiguous to P. Butthefunction <5
seems to be more natural than <5* and extensions to higher dimensions more routine.
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7. We conclude with an incomplete result. Following ideas of
Ostrow and Stein [8], we may consider instead of HA the somewhat more
general integral

T (x) = J f(y)iY'(y)cp(x - y) dy
A En IX _ yln+A + 8n+A(x) ,

where cp is a non-negative locally integrable function satisfying the condition

J cp(x) dx < Mpn (0 < p < co). (7.1)
Ixl.;p

It is very easy to show that if f E L then TA is likewise in Land [[TA[ll <
MAn. Allf[[ 1; in particular the integral

J f(y)8A(y)cp(X- y) dy
En Ix - yln+A

generalizing JA, is finite almost everywhere in P. Whether, however, fED',
1 <p < co, implies TA ELP seems to be an open problem.
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